Q)  Prove that: (1 + cot 2 θ) (1 – cos θ) (1 + cos θ) = 1

Ans: 

Method 1:

Step 1: Let’s start with LHS and put values of cot θ:

LHS = (1 + cot 2 θ) (1 – cos θ) (1 + cos θ)

= (1 + (\frac{\cos \theta}{\sin \theta})^2) (1 - \cos ^2 \theta)  [∵ (a – b) (a + b) = (a2 – b2 )]

= (\frac{\sin ^2 \theta + \cos ^2 \theta}{\sin ^2 \theta})(1 - \cos ^2 \theta)

Step 2: We know that sin 2 θ + cos 2 θ = 1,

1 – cos 2 θ = sin 2 θ

By substituting these values in LHS, we get:

LHS = (\frac{\sin ^2 \theta + \cos ^2 \theta}{\sin ^2 \theta}) (1 - \cos ^2 \theta)

= (\frac{1}{\sin ^2 \theta}) (\sin ^2 \theta)

= 1

Hence Proved !

Method 2:

Step 1: Let’s start with LHS and applying trigonometric identities:

LHS = (1 + cot 2 θ) (1 – cos θ) (1 + cos θ)

We know that 1 + cot 2 θ = cosec 2 θ

∴ LHS = (1 + cot 2  θ) (1 – cos θ) (1 + cos θ)

= cosec 2 θ (1 – cos 2 θ)

Step 2: We know that sin 2 θ + cos 2 θ = 1,

1 – cos 2 θ = sin 2 θ

By substituting these values in LHS, we get:

LHS = cosec 2 θ (1 – cos 2 θ)

= cosec 2 θ (sin 2 θ)

=  1

Hence Proved !

Please press “Heart” button if you like the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top