Q) Prove that: (1 + cot 2 θ) (1 – cos θ) (1 + cos θ) = 1
Ans:
Method 1:
Step 1: Let’s start with LHS and put values of cot θ:
LHS = (1 + cot 2 θ) (1 – cos θ) (1 + cos θ)
= (1 + ( [∵ (a – b) (a + b) = (a2 – b2 )]
=
Step 2: We know that sin 2 θ + cos 2 θ = 1,
1 – cos 2 θ = sin 2 θ
By substituting these values in LHS, we get:
LHS =
=
= 1
Hence Proved !
Method 2:
Step 1: Let’s start with LHS and applying trigonometric identities:
LHS = (1 + cot 2 θ) (1 – cos θ) (1 + cos θ)
We know that 1 + cot 2 θ = cosec 2 θ
∴ LHS = (1 + cot 2 θ) (1 – cos θ) (1 + cos θ)
= cosec 2 θ (1 – cos 2 θ)
Step 2: We know that sin 2 θ + cos 2 θ = 1,
1 – cos 2 θ = sin 2 θ
By substituting these values in LHS, we get:
LHS = cosec 2 θ (1 – cos 2 θ)
= cosec 2 θ (sin 2 θ)
= 1
Hence Proved !
Please press “Heart” button if you like the solution.