Q) If in Δ ABC, AD is median and AE ⊥ BC, then prove that AB2 + AC2 = 2 AD2 + BC2
Ans:
Step 1: Let’s make a diagram for the question:
Step 2: In Δ ABE, ∠ AEB is 900,
∴ by Pythagoras theorem: AB2 = AE2 + BE2 …….. (i)
Similarly, In Δ ACE, ∠ AEC is 900,
∴ by Pythagoras theorem: AC2 = AE2 + CE2 ……… (ii)
Step 3: By adding equations (i) and (ii), we get:
AB2 + AC2 = (AE2 + BE2 ) + (AE2 + CE2)
∴ AB2 + AC2 = 2 AE2 + BE2 + CE2 ………….(iii)
Step 4: In Δ ADE, ∠ AED is 900,
∴ by Pythagoras theorem: AD2 = AE2 + DE2
∴ AE2 = AD2 – DE2 …….. (iv)
Since BE = BD + DE
∴ BE2 = (BD + DE)2 = BD2 + DE2 + 2 BD . DE …….. (v)
Similarly, since CE = CD – DE
∴ CE2 = (CD – DE)2 = CD2 + DE2 – 2 CD . DE …….. (vi)
Step 5: By substituting values from equations (iv), (v) and (vi) into equation (iii), we get:
∴ AB2 + AC2 = 2 AE2 + BE2 + CE2
= 2 (AD2 – DE2 ) + (BD2 + DE2 + 2 BD . DE) + (CD2 + DE2 – 2 CD . DE)
= 2 AD2 – + BD2 + + 2 BD . DE + CD2 + – 2CD . DE
∴ AB2 + AC2 = 2 AD2 + BD2 + 2 BD . DE + CD2 – 2 CD . DE ……………. (vii)
Step 6: Since D is the mid-point of BC, hence, BD = CD
∴ AB2 + AC2 = 2 AD2 + BD2 + 2 BD . DE + (BD)2 – 2 (BD) . DE
= 2 AD2 + BD2 + + BD2 –
∴ AB2 + AC2 = 2 AD2 + 2 BD2 …………….. (viii)
Step 7: Since D is the mid-point of BC, hence, BC = 2 BD
∴ BD =
∴ AB2 + AC2 = 2 AD2 + 2
∴ AB2 + AC2 = 2 AD2 + BC2
Please press the “like” button if you like the solution.