Q) If tan θ = , then show that =
Ans: Given that, tan θ =
cot θ = √7
Let’s start from numerator of LHS:
cosec2 θ – sec2 θ = (1 + cot2 θ) – (1 + tan2 θ)
= cot2 θ – tan2 θ
= (√7)2 –
= 7 –
= ………………… (i)
Similarly, let’s solve denominator of LHS:
cosec2 θ + sec2 θ
= (1 + cot2 θ) + (1 + tan2 θ)
= 2 + cot2 θ + tan2 θ
= 2 + (
= 9 +
= ………………….. (ii)
Now, let’s put the values from equation (i) and equation (ii) in LHS, we get:
LHS =
=
= ….. RHS…. Hence Proved !