Q) Solve the following pair of linear equations:

\frac{x}{a} - \frac{y}{b} = 0

a x + b y = a^2 + b^2

Ans: 

Given the equations:

\frac{x}{a} - \frac{y}{b} = 0 ……….. (i)

a x + b y = a^2 + b^2 ………….(ii)

Step 1: Let’s multiply equation (i) by band add to equation (ii), we get:

\frac{x}{a} \times b^2 - \frac{y}{b} \times b^2 + a x + b y = 0 + a ^2 + b^2 ……….. (i)

\frac{x b^2 }{a} - b y + a x + b y = 0 + a ^2 + b^2 ……….. (i)

\frac{x b^2 }{a} + a x = 0 + a ^2 + b^2 ……….. (i)

∴ b2 x + a2 x = a ( a2 + b2 )

∴ x (a2 + b2 ) = a ( a2 + b2 )

∴ x  = a

Step 2: Lets substitute x = a in equation (ii) and we get:

a x + b y = a2 + b2

∴ a (a) + b y = a2 + b2

∴ a2 + b y = a2 + b2

∴ b y =  b2

∴ y =  b

Therefore, x = a and y =  b

Please do press “Heart” button if you liked the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top