Q) Evaluate: \frac{5 \cos ^2 60 + 4 \sec ^2 30 - \tan ^2 45} {\sin ^2 30 + \sin ^2 60}

Ans: Let’s take the components one by one:

Step 1: we know that cos 60 = \frac{1}{2}, sec 30 = \frac{2}{\sqrt 3}, tan 45 = 1,

sin 30 = \frac{1}{2}, sin 60 = \frac{\sqrt 3}{2}

Step 2: Let’s put these values in the given expression, we get:

\frac{5 \cos ^2 60 + 4 \sec ^2 30 - \tan ^2 45} {\sin ^2 30 + \sin ^2 60}

\frac{5 (\frac{1}{2})^2 + 4 (\frac{2}{\sqrt 3})^2 - (1)^2} {(\frac{1}{2})^2  + (\frac{\sqrt 3}{2})^2}

\frac{5 (\frac{1}{4}) + 4 (\frac{4}{3}) - (1)}{(\frac{1}{4})  + (\frac{3}{4})}

\frac{(\frac{5}{4} + \frac{16}{3} - 1)}{(\frac{1}{4}  + \frac{3}{4})}

\frac{(\frac{15 + 64 - 12}{12})}{(\frac{1 + 3}{4})}

\frac{(\frac{67}{12})}{(\frac{4}{4})}

\frac{67}{12}

Therefore the value of given expression is \frac{67}{12}

Please press the “Heart”, if you like the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top