Q) Solve the following quadratic equations by factorization method:

\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x},a+b\ne0

Ans:

\frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}

\frac{x-(a+b+x)}{x(a+b+x)}=\frac{a+b}{ab}

\frac{-(a+b)}{x(a+b+x)}=\frac{a+b}{ab}

-ab(a+b)=(a+b)x(a+b+x)

-ab\cancel{(a+b)}=\cancel{(a+b)}x(a+b+x)

-ab=x(a+b+x)

x(a+b+x)+ab=0

ax+bx+x^2+ab=0

x^2+ax+bx+ab=0

x(x+a)+b(x+a)=0

(x+a)(x+b)=0

x+a=0\implies x=-a, ~or,

x+b=0\implies x=-b

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top