Q)    Solve the following quadratic equation by factorization method:

4x^{2}-4a^{2}x+(a^{4}-b^{4})=0

Ans:

4x^{2}-4a^{2}x+(a^{4}-b^{4})=0

The Constant term a^{4}-b^{4} can also be presented as:

(a^{2}-b^{2})(a^{2}+b^{2})

Similarly, Coefficient of the middle term can be presented as:

-4a^{2}=-(2(a^{2}+b^{2})+2(a^{2}-b^{2}))

Now, the original quadratic equation:

4x^{2}-4a^{2}x+(a^{4}-b^{4})=0

4x^{2}-(2(a^{2}+b^{2})+2(a^{2}-b^{2}))x+(a^{2}-b^{2})(a^{2}+b^{2})=0

4x^{2}-2(a^{2}+b{2})x-2(a^{2}-b^{2})x+(a^{2}-b^{2})(a^{2}+b^{2})=0

\{4x^{2}-2(a^{2}+b^{2})x\}-\{2(a^{2}-b^{2})x-(a^{2}-b^{2})(a^{2}+b^{2})\}=0

2x\{2x-(a^{2}+b^{2})\}-(a^{2}-b^{2})\{2x-(a^{2}+b^{2})\}=0

\{2x-(a^{2}+b^{2})\}\{2x-(a^{2}-b^{2})\}=0

2x-(a^{2}+b^{2})=0  and  2x-(a^{2}-b^{2})=0

\Rightarrow x=\frac{a^{2}+b^{2}}{2}  and x = \frac {a^2 - b^2}{2}

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top