Q) Find X in terms of a b, and c: , X ≠ a, b, c
Ans:
Given equation is:
∴
∴ [a (X – b) + b (X – a)] (X – c) = 2 c (X – a) (X – b)
∴ (a X – a b + b X – a b )(X – c) = 2 c (X – a) (X – b)
∴ (a X + b X – 2 a b) (X – c) = 2 c (X2 – a X – b X + a b)
∴ a X2 + b X2 – 2 a b X – a c X – b c X + 2 a b c = 2 c X2 – 2 a c X – 2 b c X + 2 a b c
∴ a X2 + b X2 – 2 c X2 – 2 a b X + a c X + b c X = 0
∴ X (a X + b X – 2 c X – 2 a b + a c + b c) = 0
∴ X [ X (a + b – 2 c ) – (2 a b – a c – b c )] = 0
∴ X = 0 and X (a + b – 2 c ) – (2 a b – a c – b c ) = 0
∴ X = 0 and X =
Therefore, X = 0 and X = are the two roots of the given equation.
Please press the “Heart” button if you like the solution.