Q) If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then prove that a2 + b2 = m2 + n2
Ans: Since a cos θ + b sin θ = m
By squaring on both sides, we get:
(a cos θ + b sin θ)2 = m2
a2 cos2 θ + b2 sin2 θ + 2 a b sin θ cos θ = m2 …………… (i)
Similarly, another given condition is:
a sin θ – b cos θ = n
by squaring on both sides we get:
(a sin θ – b cos θ)2 = n2
a2 sin2 θ + b2 cos2 θ – 2 a b sin θ cos θ = n2 …………… (ii)
By adding both equations (i) and (ii), we get:
a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ) = m2 + n2
Since, sin2 θ + cos2 θ = 1
Therefore, a2 + b2 = m2 + n2