Q) If cosθ + sin θ = 1 , then prove that cosθ – sinθ = ±1

Ans:

VIDEO SOLUTION

STEL BY STEP SOLUTION

Given that If cosθ + sinθ = 1

Step 1: We square the above equation on both sides, we get:

(cos θ + sin θ) = (1)

∴ cos2 θ + sin2 θ  + 2 cos θ  sin θ = 1

∴ cos2 θ + sin2 θ  = 1 – 2 cos θ  sin θ

Step 2: Now, by Trigonometry identity, we have, cos2 θ + sin2 θ  = 1

∴ cos2 θ + sin2 θ  = cos2 θ + sin2 θ  – 2 cos θ  sin θ

Step 3: Now since a2 + b2 – 2 a b = (a – b)2

∴ cos2 θ + sin2 θ  = (cos θ – sin θ)2

∴ 1 = (cos θ – sin θ)2                  (by cos2 θ + sin2 θ  = 1)

Step 4: Now by taking square root on both sides, we get:

√ (1) = √ (cos θ – sin θ)2     

∴ cosθ – sinθ = ±1 …… Hence proved!

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top