Q)  If in a triangle ABC right angled at B, AB = 6 units and BC = 8 units, then find the value of sin A cos C + cos A sin C.

Ans: 

Step 1: Let’s make a diagram to better understand the question:

If in a triangle ABC right angled at B, AB = 6 units and BC = 8 units,

Here Δ ABC is a right angle triangle and ∠B is 90.

we are given AB = 6 units, BC = 8 units

Step 2: By Pythagoras theorem, let’s calculate the value of side AC:

AC2 = AB2 + BC2

∴ AC2 = (6)2 + (8)2  = 36 + 64

= 100 = (10)2

∴ AC = 10 units

Step 3: From the diagram, let’s calculate the different values:

sin A = \frac{BC}{AC} = \frac{8}{10} = \frac{4}{5}

and cos A = \frac{AB}{AC} = \frac{6}{10} = \frac{3}{5}

Similarly, sin C = \frac{AB}{AC} = \frac{6}{10} = \frac{3}{5}

and cos C = \frac{BC}{AC} = \frac{8}{10} = \frac{4}{5}

Step 4: Let’s put the values now:

sin A cos C + cos A sin C

= \frac{4}{5} \times \frac{4}{5} + \frac{3}{5} \times \frac{3}{5}

= \frac{16}{25} + \frac{9}{25} = \frac{16 + 9}{25}

= \frac{25}{25} = 1

Therefore, the value of sin A cos C + cos A sin C is 1.

Please press “Heart” button if you like the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top