Q) If \sec \alpha = \frac{2}{\sqrt3}, then find the value of  \frac {1- \csc \alpha}{1+ \csc \alpha}, where α is in IV quadrant.

Ans:  

Since, \sec \alpha = \frac{2}{\sqrt3}

\therefore \cos \alpha = \frac{1}{\sec \alpha} =  \frac {1}{\frac{2}{\sqrt3}} = \frac{\sqrt 3}{2}

We know that \sin ^2 \alpha + \cos ^2 \alpha = 1

\therefore \sin ^2 \alpha = 1 -  \cos ^2 \alpha  = 1 - (\frac{\sqrt 3}{2})^2 = 1 - \frac{3}{4} = \frac{1}{4}

\therefore \sin \alpha = \pm \frac{1}{2}

Now since, α is in IV quadrant, therefore value of \sin \alpha will be negative only.

\therefore \sin \alpha =  - \frac{1}{2}

\therefore \csc \alpha =  - 2

Now, \frac {1 - \csc \alpha}{1 + \csc \alpha} = \frac {1 - (- 2)}{1 + (- 2)} = \frac {1 + 2}{1 - 2} = \frac {3}{-1} = -3

Therefore {\frac {1- \csc \alpha}{1+ \csc \alpha} = -3

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top