Q) If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p.

Ans:  

sec θ + tan θ = p ………….. (i)

∵ sec2 θ  – tan2 θ = 1

∴ (sec θ + tan θ) (sec θ – tan θ) = 1

∴ p (sec θ – tan θ) = 1

∴ sec θ – tan θ = \frac{1}{p} ………… (ii)

By adding equations (i) and (ii), we get:

2 sec θ = p + \frac{1}{p}\frac{1 + p^2}{p}

∴ sec θ = \frac{1 + p^2}{2 p}

By subtracting equation (ii) from (i), we get:

2 tan θ = p – \frac{1}{p} = \frac{p^2 - 1}{p}

∴ tan θ = \frac{p^2 - 1}{2 p}

∴ tan θ = \frac{p^2 - 1}{2 p}

\frac{sin \theta}{cos \theta} = \frac{p^2 - 1}{2 p}

∴ sin θ x sec θ = \frac{p^2 - 1}{2 p}

∴ sin θ x \frac{1 + p^2}{2 p} = \frac{p^2 - 1}{2 p}

∴ sin θ = \frac{\frac{p^2 - 1}{2 p}}{\frac{p^2 + 1}{2 p}}

∴ sin θ = \frac{p^2 - 1}{p^2 + 1}

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top