Q) If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p.
Ans:
sec θ + tan θ = p ………….. (i)
∵ sec2 θ – tan2 θ = 1
∴ (sec θ + tan θ) (sec θ – tan θ) = 1
∴ p (sec θ – tan θ) = 1
∴ sec θ – tan θ = ![]() ………… (ii)
 ………… (ii)
By adding equations (i) and (ii), we get:
2 sec θ = p + ![]() =
 = ![]()
∴ sec θ = ![]()
By subtracting equation (ii) from (i), we get:
2 tan θ = p – ![]() =
 = ![]()
∴ tan θ = ![]()
∴ tan θ = ![]()
∴ ![]()
∴ sin θ x sec θ = ![]()
∴ sin θ x ![]() =
 = ![]()
∴ sin θ = ![]()
∴ sin θ = ![]()
