Q) If sin θ + sin2 θ  = 1, then prove that cos2 θ + cos4 θ = 1.

Ans: 

Given that sin θ + sin2 θ  = 1

\therefore  sin θ = 1 – sin2 θ

LHS:  cos2 θ + cos4 θ

= (1- sin2 θ) + (1- sin2 θ)2

= sin θ  + (sin θ)2

= sin θ + sin2 θ

= 1

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top