Q) If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q (p2  – 1) = 2 p.

Ans: Let’s take the components one by one:

Step 1: Given that sin θ + cos θ = p

∴ p = sin θ  + cos θ ….. (i)

Step 2: Given that sec θ + cosec θ = q

∴ q = \frac{1}{\cos \theta} + \frac{1}{\sin \theta}

∴ q = \frac{(\sin \theta + \cos \theta)}{\sin \theta \cos \theta} ……………… (ii)

Step 3: starting from LHS =  q (p2 – 1)

= (\frac{(\sin \theta + \cos \theta)}{\sin \theta \cos \theta}) ( (\sin \theta  + \cos \theta)^2 - 1)

(\frac{(\sin \theta + \cos \theta)}{\sin \theta \cos \theta}) (\sin ^2 \theta  + \cos ^2 \theta + 2 \sin \theta \cos \theta - 1)

Since sin2 θ + cos 2 θ = 1

∴ LHS = (\frac{(\sin \theta + \cos \theta)}{\sin \theta \cos \theta}) (1 + 2 \sin \theta \cos \theta - 1)

= (\frac{(\sin \theta + \cos \theta)}{\sin \theta \cos \theta}) (\cancel{1} + 2 \sin \theta \cos \theta - \cancel{1})

= (\frac{(\sin \theta + \cos \theta)}{\sin \theta \cos \theta}) (2 ~ \sin \theta \cos \theta)

= (\frac{(\sin \theta + \cos \theta)}{\cancel{\sin \theta \cos \theta}}) (2 ~ \cancel{\sin \theta \cos \theta})

= 2 (\sin \theta + \cos \theta)

= 2 p        [Since sin θ + cos θ = p]

Hence Proved !

Please press the “Heart”, if you like the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top