Q)  If tan θ + sec θ = m, then prove that sec θ = \frac{m^2 + 1}{2m}.

Ans: We are given: tan θ + sec θ = m ………… (i)

Next, we calculate value of tan θ + sec θ

To do that, we multiply and divide (tan θ + sec θ) by (tan θ – sec θ)

Hence, (tan θ + sec θ) \frac{(\tan \theta - \sec \theta)} {(\tan \theta - \sec \theta)} = m

\frac{(\tan ^2 \theta - \sec ^2 \theta)} {(\tan \theta - \sec \theta)} = m

We know that 1 + tan2 θ = sec2 θ

∴ tan2 θ  – sec2 θ  = – 1

\frac{(\tan ^2 \theta - \sec ^2 \theta)} {(\tan \theta - \sec \theta)} = m

\frac{- 1} {(\tan \theta - \sec \theta)} = m

∴ tan θ  – sec θ  = \frac{- 1}{m} …… (ii)

By subtracting equation (ii) from equation (i), we get:

(tan θ  + sec θ)  – (tan θ  – sec θ)  = m  – (\frac{- 1}{m})

∴ 2 sec θ  = m  + \frac{1}{m} = \frac{m^2 + 1}{m}

∴ sec θ  = \frac{m^2 + 1}{2m}

Hence Proved !

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top