Q)  If the sum of m terms of an A.P. is the same as the sum of its n terms, show that the sum of its (m+n) terms is zero.

Ans: Let

a = First term of the given A.P. and

d = Common difference .

Then,

S_{m}=S_{n}

\frac{m}{2}\{2a+(m-1)d\}=\frac{n}{2}\{2a+(n-1)d\}

2am + m(m-1)d = 2an + n(n-1)d

2am + m(m-1)d - 2an - n(n-1)d = 0

2am - 2an + m(m-1)d - n(n-1)d = 0

2a(m-n)+\{m(m-1)-n(n-1)\}d=0

2a(m-n)+\{(m^{2}-n^{2})-(m-n)\}d=0

(m-n)\{2a+(m+n-1)d\}=0

2a+(m+n-1)d=0.                 [(m-n)\neq 0]

Now, S_{m+n}=\frac{m+n}{2}\{2a+(m+n-1)d\}=\frac{m+n}{2}\times0=0

Hence Proved!

Please do press “Heart” button if you liked the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top