Q) In the given figure PA, QB and RC are each perpendicular to AC. If AP = x, BQ = y and CR = z, then prove that 1/x + 1/z = 1/y

In the given figure PA, QB and RC are each perpendicular to AC

Ans:

Step 1: In Δ APC and Δ BQC,

∠ PCA = ∠  QCB  (common angle)

∠ PAC = ∠  QBC  (900)

By AA identity, Δ APC ~ Δ BQC

Hence, \frac{QB}{PA} = \frac{BC}{AC}   

\Rightarrow \frac{y}{x} = \frac{BC}{AC}   ………….. (i)

Step 2: In Δ RCA and Δ QBA,

∠ RAC = ∠  QAB  (common angle)

∠ RCA = ∠  QBA  (900)

By AA identity, Δ RCA ~ Δ QBA

Hence, \frac{QB}{RC} = \frac{AB}{AC}   

\Rightarrow \frac{y}{z} = \frac{AB}{AC}   ………….. (ii)

By adding equations (i) and (ii), we get:

\frac{y}{x} + \frac{y}{z} = \frac{BC}{AC}  + \frac{AB}{AC} 

\Rightarrow \frac{y}{x} + \frac{y}{z} = \frac{BC + AB}{AC}  

\Rightarrow \frac{y z + y x}{x z} = \frac{AC}{AC} = 1  

\Rightarrow y z + y x = x z

Dividing by x y z on both sides, we get:

\Rightarrow \frac{y z + y x}{x y z} = \frac{x z}{x y z}  

\Rightarrow \frac{1}{x} + \frac {1}{z} = \frac{1}{y}

Hence Proved !

Please do press “Heart” button if you liked the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top