Q)  Prove that \frac{(1 + \cot ^2 A)}{(1 + \tan ^ 2 A)} = \cot ^2 A

Ans: 

Method 1:

Step 1: Let’s start with LHS and put values of cot A and tan A:

LHS = \frac{(1 + \cot ^2 A)}{(1 + \tan ^ 2 A)}

= \frac{(1 + \frac{\cos ^2 A}{\sin ^2 A})}{(1 + \frac{\sin ^2 A}{\cos ^2 A})}

= \frac{(\frac{(\sin ^2 A + \cos ^2 A)}{\sin ^2 A})}{(\frac{(\cos ^2 A + \sin ^2 A)}{\cos ^2 A})}

Step 2: We know that sin A + cos A = 1

= \frac{(\frac{1}{\sin ^2 A})}{(\frac{1}{\cos ^2 A})}

= \frac{\cos ^2 A}{\sin ^2 A}

= \cot ^2A

Hence Proved !

Method 2:

Let’s start with LHS and applying trigonometric identities:

LHS = \frac{(1 + \cot ^2 A)}{(1 + \tan ^ 2 A)}

= \frac{(\cos ec^2 A)}{(\sec ^2 A)}

= \frac{(\frac{1}{\sin ^2 A})}{(\frac{1}{\cos ^2 A})}

= \frac{\cos ^2 A}{\sin ^2 A}

= \cot ^2A

Hence Proved !

Please press “Heart” button if you like the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top