Q) Prove that, 2(sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) +1 = 0
Ans: We know that, (a-b)3 = a3 – b3 – 3ab (a – b)
And (a-b)2 = a2 + b2 – 2ab
LHS: 2(sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) +1
= 2[sin6 θ + (1 – sin2θ)3] – 3 [sin4 θ + (1- sin 2 θ)2] +1
= 2 [sin6 θ + [1 – sin6 θ – 3 sin2 θ (1-sin2 θ)] – 3 [sin4 θ + 1 + sin4 θ – 2 sin2 θ] + 1
= 2[1- 3 sin2 θ + 3 sin4 θ] – 3 [2 sin4 θ + 1 – 2 sin2 θ] + 1
= 2 – 6 sin2 θ + 6 sin4 θ – 6 sin4 θ – 3 + 6 sin2 θ + 1
= 0 = RHS……… Hence Proved