Q) Prove that: \frac{\cos^2 \theta}{1-\tan \theta} +  \frac{\sin^3 \theta}{\sin \theta - \cos \theta} =  1 + sinθ cosθ

Ans:

Let’s start from LHS

LHS = \frac{\cos^2 \theta}{1-\tan \theta} +  \frac{\sin^3 \theta}{\sin \theta - \cos \theta}

= \frac{\cos^2 \theta}{1-\frac{\sin \theta}{\cos\theta}} +  \frac{\sin^3 \theta}{\sin \theta - \cos \theta}

= \frac{\cos^2 \theta}{\frac{\cos\theta-\sin \theta}{\cos\theta}} +  \frac{\sin^3 \theta}{\sin \theta - \cos \theta}

= \frac{\cos^3 \theta}{\cos\theta-\sin \theta} -  \frac{\sin^3 \theta}{\cos \theta - \sin \theta}

= \frac{\cos^3 \theta - \sin^3\theta}{\cos\theta-\sin \theta}

We know that, a3 – b3 = (a – b) (a2 + b2 + ab)

\therefore LHS = \frac{(\cos \theta - \sin\theta)(\cos^2\theta + \sin^2\theta + \cos \theta \sin \theta)}{\cos \theta - \sin \theta}

= (cos2 θ + sin2 θ + sin θ cos θ)

= 1 + sinθ cosθ

= RHS …………. Hence proved!

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top