Q) Prove that \frac {\sin \theta - 2 \sin^3 \theta}{2 \cos ^3 \theta - \cos \theta} = \tan \theta

Ans: Let’s start from LHS:

LHS = \frac {\sin \theta - 2 \sin^3 \theta}{2 \cos ^3 \theta - \cos \theta}

= \frac {\sin \theta (1 - 2 \sin^2 \theta)}{\cos \theta (2\cos ^2 \theta - 1)}

We know that sin2 θ + cos2 θ = 1

By substituting this value in the above equation, we get:

LHS = \frac {\sin \theta ((\sin^2 \theta + \cos^2 \theta) - 2 \sin^2 \theta)}{\cos \theta (2\cos ^2 \theta - (\sin^2 \theta + \cos^2 \theta))}

= \frac {\sin \theta (\sin^2 \theta + \cos^2 \theta - 2 \sin^2 \theta)}{\cos \theta (2\cos ^2 \theta - \sin^2 \theta - \cos^2 \theta)}

= \frac {\sin \theta (\cancel{\sin^2 \theta} + \cos^2 \theta - \cancel{2} \sin^2 \theta)}{\cos \theta (\cancel{2}\cos ^2 \theta - \sin^2 \theta - \cancel{\cos^2 \theta)}}

= \frac {\sin \theta (\cos^2 \theta - \sin^2 \theta)}{\cos \theta (\cos ^2 \theta - \sin^2 \theta)}

= \frac {\sin \theta \cancel{(\cos^2 \theta - \sin^2 \theta)}}{\cos \theta \cancel{(\cos ^2 \theta - \sin^2 \theta)}}

= \frac {\sin \theta}{\cos \theta}

= \tan \theta

Hence Proved !

Please do press “Heart” button if you liked the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top