Q) Prove that \frac{sin A + cos A}{sin A - cos A} + \frac{sin A - cos A}{sin A + cos A} = \frac{2}{2 sin2 A - 1}

Ans: Let’s start solving from LHS:

\frac{sin A + cos A}{sin A - cos A} + \frac{sin A - cos A}{sin A + cos A}

= \frac{(sin A + cos A)(sin A + cos A) + (sin A - cos A)(sin A - cos A)}{(sin A - cos A)(sin A + cos A)}

= \frac{(sin ^2 A + cos ^2 A + 2 sin A cos A) + (sin ^2 A + cos ^2 A - 2 sin A cos A)}{(sin^2 A - cos^2 A)}

= \frac{(sin ^2 A + cos ^2 A + 2 sin A cos A + sin ^2 A + cos ^2 A - 2 sin A cos A)}{(sin^2 A - cos^2 A)}

= \frac{(sin ^2 A + cos ^2 A + \cancel{2 sin A cos A} + sin ^2 A + cos ^2 A - \cancel{2 sin A cos A})}{(sin^2 A - cos^2 A)}

= \frac{2 (sin ^2 A + cos ^2 A)}{(sin^2 A - cos ^2 A)}

∵ sin2 A + cos2 A = 1, ∴ cos2 A = 1 – sin2 A

∴ LHS =  \frac{2 (1)}{(sin^2 A - (1 - sin ^2 A)}

= \frac{2 (1)}{(sin^2 A - 1 + sin ^2 A)}

= \frac{2}{2 sin^2 A - 1}

= RHS….  Hence Proved !

Please press the “Heart”, if you like the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top