Q). Prove that: sin θ/(cot θ + cosec θ) = 2 + sin θ /(cot θ – cosec θ)
Ans. Let’s start from LHS:
Step 1: LHS =
=
=
=
Step 2: We know that sin2 θ + cos2 θ = 1
∴ sin2 θ = 1 – cos2 θ
∴ LHS =
Step 3: We know that a2 – b2 = (a + b) ( a – b)
1 – cos2 θ = 12 – cos2 θ = (1 + cos θ ) ( 1- cos θ )
∴ LHS =
=
= 1 – cos θ ………… (i)
Step 4: Next we take RHS:
RHS = 2 +
= 2 +
= 2 +
= 2 +
Step 5: Since, sin2 θ = 1 – cos2 θ
∴ RHS = 2 +
Step 6: Since 1 – cos2 θ = (1 + cos θ ) ( 1- cos θ )
∴ RHS = 2 +
= 2 +
= 2 +
= 2 – (1 + cos θ)
= 2 – 1 – cos θ
= 1 – cos θ .……….. (ii)
Step 7: By comparing (i) and (ii), we get: LHS = RHS ………. Hence Proved !
Please press the “Heart” button if you like the solution.