Q)  Prove that : tan θ /(1 – cot θ) + cot θ / (1 – tan θ) = 1 + sec θ + cosec θ

Ans:  Here, let’s start by simplifying the LHS in given equation:

LHS = \frac{\tan \theta}{(1 - \cot \theta)} + \frac{\cot \theta}{(1 - \tan \theta)}

= \frac{(\frac{\sin \theta}{\cos \theta})} {1 - (\frac{\cos \theta}{\sin \theta})} + \frac{(\frac{\cos \theta}{\sin \theta})} {1 - (\frac{\sin \theta}{\cos \theta})}

= \frac{(\frac{\sin \theta}{\cos \theta})} {\frac{\sin \theta - \cos \theta}{\sin \theta})} + \frac{(\frac{\cos \theta}{\sin \theta})} {\frac{\cos \theta - \sin \theta}{\cos \theta})}

= \frac{\sin ^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos ^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}

= \frac{\sin ^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} - \frac{\cos ^2 \theta}{\sin \theta (\sin \theta - \cos \theta)}

= \frac{\sin ^3 \theta - \cos ^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}

Now, we know that a3 – b3 = (a – b) (a2 + b2 + a b) 

Hence, sin3 θ – cos3 θ  = (sin θ  – cos θ ) (sin2 θ  + cos2 θ  + sin θ  cos θ)

∵ sin2 θ  + cos2 θ  = 1

∴ sin3 θ – cos3 θ  = (sin θ  – cos θ ) (1 + sin θ  cos θ)

By substituting this value in nominator of LHS, we get:

LHS = \frac{\sin ^3 \theta - \cos ^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}

= \frac{(\sin \theta - \cos \theta) (1 + \sin \theta \cos \theta)}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}

= \frac{(1 + \sin \theta \cos \theta)}{\sin \theta \cos \theta}

= \frac {\sin \theta \cos \theta}{\sin \theta \cos \theta} + \frac{1}{\sin \theta \cos \theta}

= 1 + sec θ cosec θ = RHS

Hence Proved !

Please do press “Heart” button if you liked the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top