Q)  Prove the following trigonometry identity: (sin θ + cos θ)(cosec θ – sec θ) = cosec θ. sec θ – 2 tan θ

ICSE Specimen Question Paper (SQP)2025

Ans: 

Let’s start from LHS:

(sin θ + cos θ)(cosec θ – sec θ)

= sin θ cosec θ – sin θ sec θ + cos θ cosec θ – cos θ sec θ

= 1 – \frac{\sin \theta}{\cos \theta} + \frac {\cos \theta}{\sin \theta} – 1

= \frac{\cos ^2 \theta - \sin ^2 \theta}{\sin \theta . \cos \theta}

We know that sin 2 θ + cos 2 θ =  1

∴ cos 2 θ = 1 – sin 2 θ

by substituting the above in above equation, we get:

LHS = \frac{(1 - \sin ^2 \theta) - \sin ^2 \theta}{\sin \theta . \cos \theta}

= \frac{1 - 2 \sin ^2 \theta}{\sin \theta . \cos \theta}

= \frac{1}{\sin \theta . \cos \theta} -  2 (\frac{ \sin ^2 \theta}{\sin \theta . \cos \theta})

= \frac{1}{\sin \theta} . \frac{1}{\cos \theta} - 2 (\frac{\sin \theta}{\cos \theta})

= cosec θ sec θ – 2 tan θ

= sec θ cosec θ – 2 tan θ

= RHS ………. hence proved !

Please press the “Heart” button if you like the solution. 

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top