Q) Find the sum of 𝑛 terms of the series (4 βˆ’1/𝑛) + (4 βˆ’2/𝑛) + (4 βˆ’3/𝑛) +…..

Ans:Β 

Method 1:

The AP (4 βˆ’1/𝑛) + (4 βˆ’2/𝑛) + (4 βˆ’3/𝑛) +…..Β  can be re-arranged as:

(4 + 4 + 4 + 4 + …..Β  up to 𝑛 terms ) – \frac{1}{n} (1 + 2 + 3+ …. upto 𝑛 terms)

Therefore sum of n terms, S_n = 4n - \frac{1}{\cancel {n}} \times \frac{\cancel{n}(n + 1)}{2}

= 4n - \frac{(n + 1)}{2}

= \frac{(8n - n - 1)}{2}

= \frac{(7n - 1)}{2}

Therefore, the sum of 𝑛 term is = \bf{\frac{(7n - 1)}{2}}.

Method 2:

The AP is given as: 4 - \frac{1}{n}, 4 - \frac{2}{n}, 4 - \frac{3}{n},.....

Its first term, a = 4 - \frac{1}{n} = \frac{4n - 1}{n}

Common difference, d = n_2 - n_1 = (4-\frac{2}{n}) - (4-\frac{1}{n})

= \cancel{4} - \frac{2}{n} - \cancel{4} + \frac{1}{n}

= - \frac{1}{n}

We know that Sum of n terms of an AP is given by:

S_n = \frac{n}{2}(2a + (n - 1)d)

By substituting values of ‘a’ and ‘d’, we get:

S_n = \frac{n}{2}(2(\frac{4n - 1}{n}) + (n - 1) (\frac{-1}{n}))

= \frac{n}{2}(\frac{2(4n - 1)}{n}) - (\frac{n - 1}{n}))

= \frac{n}{2}(\frac{8n - 2 - (n - 1)}{n})

= \frac{ \cancel{n}}{2}(\frac{8n - 2 - n + 1)}{ \cancel{n}})

= \frac{n}{2}(\frac{7n-1)}{n})= \frac{7n-1}{2}

Therefore, the sum of 𝑛 term is = \bf{\frac{7n - 1}{2}}.

Please do press β€œHeart” button if you liked the solution.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top