Q) Solve the following pair of linear equations:
(a – b) x + (a + b) y = a2 – 2 a b – b2
(a + b) (x + y) = a2 + b2
Ans:
Given the equations:
(a – b) x + (a + b) y = a2 – 2 a b – b2…… (i)
(a + b) (x + y) = a2 + b2……..(ii)
Step 1: Let’s subtract equation (ii) from equation (i) and we get:
[(a – b) x + (a + b) y] – [(a + b) (x + y)] = [ a2 – 2 a b – b2 ] – [ a2 + b2 ]
∴ [(a – b) x + (a + b) y] – [(a + b) x + (a + b) y)] = [a2 – 2 a b – b2 – a2 – b2]
∴ [(a – b) x + (a + b) y – (a + b) x – (a + b) y)] = [a2 – 2 a b – b2 – a2 – b2]
∴ [(a – b) x – (a + b) x ] = [ – 2 a b – b2 – b2]
∴ [a x – b x – a x – b x] = [- 2 a b – 2 b2 ]
∴ [ – b x – b x] = [- 2 b ( a + b) ]
∴ [- 2 b x ] = [- 2 b ( a + b) ]
∴ x = ( a + b)
Step 2: Let’s substitute x = (a = b) in equation (ii) and we get:
(a + b) ( x + y) = a2 + b2
∴ (a + b) [(a + b) + y] = a2 + b2
∴ (a + b)2 + (a + b) y = a2 + b2
∴ (a + b) y = a2 + b2 – (a + b)2
∴ (a + b) y = a2 + b2 – (a2 + b2 + 2 a b)
∴ (a + b) y = a2 + b2 – a2 – b2 – 2 a b
∴ (a + b) y = – 2 a b
∴ y =
Therefore, x = (a + b) and y =
Please do press “Heart” button if you liked the solution.