Q) In the given figure, XZ is parallel to BC. AZ = 3 cm, ZC = 2 cm, BM = 3 cm and MC = 5 cm. Find the length of XY.

30.1.1_Q22-min

Ans: Since XZ ǁ BC, Therefore, \frac{AX}{XB} = \frac{AZ}{AC} (BPT Theorem)

\frac{AX}{AB} = \frac{AZ}{AZ + ZC} = \frac{3}{3 +2} = \frac{3}{5} ………….. (i)

Since XZ ǁ BC,   ∴  XY ǁ BM

∠ AXY  = ∠ ABM      (Corresponding angles)

∠ XAY  = ∠ BAM       (Common angle)

∴ Δ AXY \sim Δ ABM    (by AA property)

∴   \frac{AX}{AB} = \frac{XY}{BM}

Substituting value from equation (i), we get:

\frac{3}{5} = \frac{XY}{3}

or XY =  \frac{9}{5} = 1.8

Therefore, the value of XY is 1.8 cm.

Scroll to Top